
MATH 732: CUBIC HYPERSURFACES

DAVID STAPLETON

1. Basic cohomological invariants of cubics

These notes are based on [Huy23, §1.1] and [Huy23, §1.3]. Please see the
disclaimer section.

Let k be an algebraically closed field. Here we work out the cohomological
invariants of smooth cubics over k. Sometimes we will assume k = C, and
we will try to point that out.

Theorem 1.1 (Lefschetz hyperplane theorem). Suppose that X ⊆ Y is
a smooth ample hypersurface in a smooth, (n + 1)-dimensional projective
k-variety Y . If k = C:

(1) Hm(Y,Z)→ Hm(X,Z) is an isomorphism for m < n and injective
for m = n.

(2) Hm(X,Z)→ Hm(X,Z) is an isomorphism form < n and surjective
for m = n.

(3) πm(X) → πm(Y ) is an isomorphism for m < n and surjective for
m = n.

(The analogous results hold when k is arbitrary for `-adic cohomology.)

So, by Poincaré duality, the cohomology of Y determines all but the n-th
(middle) cohomology group of X! For Y = Pn+1 (and say k = C) we have:

Hm(Pn+1,Z) = {Z if m even and 0 ≤m ≤ 2n + 2

0 otherwise.

Thus for a smooth (complex) cubic hypersurface X ⊆ Pn+1 we have:

Hm(X,Z) = {Z if m even and (0 ≤m < n or n <m ≤ 2n),

0 otherwise.

What remains to resolve is the middle cohomology group Hn(X,Z).

Remark 1.2 (Torsion free cohomology). Letting X be a smooth complex
cubic (or degree d) hypersurface, by the universal coefficients theorem
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there is an exact sequence:

0→ Ext1(Hm−1(X,Z),Z)→ Hm(X,Z)→ Hom(Hm(X,Z),Z)→ 0.

Thus the torsion in Hn(X,Z) is determined by the torsion in Hn(X,Z)
which is trivial here. In particular, this implies Hn(X,Z) is determined
as a group by its rank. This can be determined by the topological Euler
characteristic of X.

The Euler characteristic e(X) of a smooth complex hypersurface X ⊆
Pn+1 of degree d is

e(X) = {n + bn(X) if n is even

n + 1 − bn(X) if n is odd.

(here bn(X) = rk(Hn(X,Z))). It is nice to phrase this in terms of the
primitive Betti number.

Definition 1.3. The primitive n-th cohomology of a smooth n-dimensional
complex projective variety X ⊆ PN is

Hn(X,Z)prim = ker(h ∪ −∶Hn(X,Z)→ Hn+2(X,Z).
Here h is the restriction of the hyperplane class of PN to H2(X,Z). This
can be defined similarly for other degrees of cohomology (see Voisin). We
set bn(X)prim = rk(Hn(X,Z)prim).

In terms of primitive cohomology we have the relation:

bn(X)prim = (−1)n(e(X) − (n + 1)).
By the Poincaré—Hopf theorem, the Euler characteristic of a degree d
hypersurface is computed as:

e(X) = ∫
X
cn(X), (Poincaré—Hopf)

i.e. it is the degree of the top Chern class of X.

Remark 1.4. If you have not seen Chern classes before, now is a good
time to learn them! I can give you references or an outline of the ideas
during office hours. There are many good exercises about Chern classes
too, that help one get a feel for their usefulness.

Lemma 1.5. If X ⊆ Pn+1 is a degree d hypersurface, then

(1) cn(X) = 1
d2 ((1 − d)n+2 + d(n + 2) − 1)hn,

(2) e(X) = 1
d ((1 − d)n+2 + d(n + 2) − 1), and thus

(3) bn(X)prim = (−1)
n

d (d − 1 + (1 − d)n+2).
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Proof. The total Chern class c(X) can determined by the Euler sequence:

0→ OX → OX(h)⊕(n+2) → TP∣X → 0 (Euler sequence)

and the normal bundle sequence:

0→ TX → TP∣X → NX = OX(d ⋅ h)→ 0 (Normal bundle sequence)

using the splitting principle. This gives:

c(X) = c(TX) = c(TP∣X)c(OX(d ⋅ h))−1

= c(OX(h)⊕(n+2))/(1 + dh)
= (1 + h)n+2(1 − dh + (dh)2 − . . . )

The class cn(X) is computed by isolating the term with hn. We have

∫X hn = d by the projection formula. �

Example 1.6. So, for example, the topological Euler characteristic of a
degree d plane curve is ((1 − d)3 + 3d − 1)/d = 3d − d2.

Remark 1.7 (Middle Betti number of cubics). The primitive Betti num-
ber of a cubic hypersurface is thus:

bn(X)prim = (−1)n
3
(2 + (−2)n+2).

For small n we have

n 1 2 3 4 5
bn(X)prim 2 6 10 22 42

Remark 1.8. It remains to determine the structure of H∗(X,Z) as a
ring. This can be found in the reference [Huy23].

Remark 1.9. We can use comparison theorems to prove similar results
for étale cohomology of hypersurfaces over the complex numbers. For
hypersurfaces over algebraically closed fields in positive characteristic, we
can again use comparison theorems to compute their cohomology using
that they spread out to smooth hypersurfaces in characteristic zero.

Exercise 1. Assume X ⊆ Pn+1 is a smooth hypersurface of degree d > 1
and P` ⊆X is a linear subspace contained in X. Show that ` ≤ n/2.

Exercise 2. Conversely, prove that if ` ≤ n/2 then there exist smooth
hypersurfaces of every degree that contain P`. For which d does every
degree d hypersurface in Pn+1 contain a P`?
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Exercise 3. Assume that X ⊆ Pn+1 is a smooth hypersurface of degree
d > 1. Let h ∈ H2(X,Z) represent the restriction of the hyperplane class.
Prove that

H2k(X,Z) = {Zh
k 0 < 2k < n

Zhk/d n < 2k < d
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